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SUMMARY

We focus on the influence of the fA-effect on the singular modes of baroclimc instability in the Phillips
model. An analytical intercompatison between normal and singular modes for the Eady problem on an f-plane
has already been performed, showing that the amplification rate of the sinpular mode for the kinetic-energy norm
after a dimensional time of three days is about 1.2 times larger than for the normal mode. We show here that,
in the presence of the B-effect, the maximum amplification rate of the singular mode can be 1.5 times larger
than for the normal-mode case. This difference is due {o the lesser stabilizing effect of § on the singular modes
compared with the normal modes. This result is obtained for the case of equal laver depths which is relevant for
the atmospheric situation. For the oceanic situation with vnequal laver depths the amplification due to g is further
increased leading fo a factor of 1.8 in amplification rates between the two types of modes after a dimensional
time of about 20 days. This behaviour is explained by the fact that 8 only intervenes in the anti-Hetmmitian part of
the linear dynamical operator, the main effect of which is to alter the vertical phase tilt of the perturbations. As a
consequence, the structure of the bi-orthogonal mode becomes more inclined to the vertical in the presence of 8
while, on the contrary, the structure of the unstable normal mode becomes less inclined.
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I. INTRODUCTION

The behaviour of small disturbances under baroclinic instability 1s traditionally stud-
ied through the normal-modes approach, where the equations of motion are linearized
about an appropriate background flow and are then solved for the eigenvectors of the
linearized dynamical operator, A, which describes the evolution of the state vector, ¢
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If, initially, ¢ (0) is the eigenvector of A {1.e. it corresponds to the normal mode) with
eigenvalue o, then ¢ (1) = ¢(0) e”’, and the time growth is exponential for any inner
product. The flow stability is inferred from the behaviour versus spatial wave number of
the real part of o, Idealized models hike those onginally considered by Eady (1949) and
Charney (1947) relied on the normal-modes method to explain cyclogenesis. Such an
approach has been widely used to study cyclogenesis in mid latitudes because it gives
the right order of magnitude for growth rates, phase speeds and spatial scales.
However, when compared with observations, the normal-modes approach failed to
explain the initial rapid growth that accompanies explosive cyclogenesis. Specifically,
Farrell (1982, 1984) showed that over the short time period typical of observed cyclo-
genesis, transient non-modal growth can dominate normal-mode growth, for the simple
set-up of the Eady model. Furthermore, he argued that the transient evolution of the
structures that occurs during observed cyclogenesis could not be explained by a single,
fixed-form normal mode. His main idea consisted of finding the best initial state such
that the solutions interacted constructively with the basic state. Rotunno and Fantini
(1989) expressed the evolution of the perturbation solely in terms of the interactions
between the two neutral normal modes of Eady’s model for spatial wave numbers be-
yond the short-wave cut-off. Their results show that, because the neutral modes are not
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orthogonal for a given norm, they can interact to extract energy from the basic flow for
finite time. On the other hand, Farrell (1989), O’Brien (1992) and Davies and Bishop
(1994) addressed the more general problem of finding the optimal growth rate for a
given physical inner product. Different methods were employed, among which were
formulations based on a variational principle and/or identification of the bi-orthogonal
of the most unstable normal mode. However, the most systematic derivation appeared
with the mtroduction of singular modes. This method was introduced to meteorology
by Lorenz (1965). It was further developed by Lacarra and Talagrand (1988) in order
to study the mitial evelution of error growth and to systematically determine the inifial
perturbation that optimizes the growth for a given inner product and for a specified finite
time, T,

For a given inner product (., .}g, the aim is to look for a perturbation that maximizes
the amplification rate

(1), p{ths
(PO, (0

If we note, & the column vector formed by the canonical components of ¢ (the canonical
basis being linked with a norm), and A, the matrix of the dynamical operator A in this
basis, it leads to the matrix equation

(2)

d
e = AP,
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and the associated resolvent M(7) 1s
P (1) = M(H D). (4)

The amplification rate for the measure {., .)g is then
(P(£), p(1))s ()" SOz}  P(O"M1)y'SM()E(0)

($(0), p(0))s  DOPSDO) @ (0)*SP(0)

where S is the matrix representing the measure {., .)s and * indicates the conjugate trans-
pose. The optimal solution is obtained when @ (0) is the eigenvector of S~ M*(£)SM(z)
which corresponds to the largest eigenvalue, the so-called singular mode. In most ideal-
ized models A does not depend on time, M(¢) = exp{At), and the singular eigenvalues

are those of S™! exp(A*1)S exp(As). This method was rapidly adopted for use in con-
junction with the tangent-linear formulation of nonhinear models for the study of quite
complex situations: Farrell and Moore (1992) and Moore and Farrell (1993) considered
the case of quasi-geostrophic oceanic flows, while Borges and Hartmann (1992) and
Yoden and Nomura (1993) dealt with a barotropic atmosphere. Joly (19935) studied the
finite-time stability of steady atmospheric fronts. Juckes (1995) investigated the stability
of shear lines on either the tropopause or the surface boundary. Singular modes are now
used operationally for ensemble prediction in several weather-prediction centres i order
to assess the spread, in the forecasts, consistent with the analysis errors.

Farrell and Ioannou (1996) elaborated in depth the usefulness of singular modes
for the ‘Generalized Stability Theory’ of several types of flows, which can either be
constant or variable in time. The same approach was also applied by Fischer (1998) to
the Eady problem with uniform potential vorticity. It is found that the singular modes
can depart significantly from the normal modes, though the dynamics of the problem
are very simple. In contrast to the behaviour of normal modes, singular modes do not
exhibit any short-wave cut-off, Moreover, for the short time hmat, the optimal structure

: (3)
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for the kinetic-energy norm is such that there is a phase quadrature with height of the
stream-function field, thus recovering a result found by Davies and Bishop (1994). For
the long time limit (after approximately 3 days for the atmosphere), the wave number at
which the most unstable singular mode is maximal (for the kinetic-energy norm) tends
toward the optimal normal-mode wave number, but the optimal singular amplification
rate still remains 20-25% larger than that of the optimal normal mode.

Hereafter, we have opted for the set-up of the Phillips (1954) model to carry out a
‘systematic intercomparison between normal modes (NM hereatter) and singular modes
(SM hereafter) for a given inner product (either kinetic-energy norm or potential-
enstrophy norm} and for a specified finite time, 7'. Our main motivation for choosing
this model is to provide an analytically tractable rationale for the influence of the -
effect which is discarded in Eady’s formulation. In section 2, the linearized equations
in the Phillips model are recalled. In section 3, analytical expressions for the short and
long time limits are derived and the results of the differences in amplification rates and
vertical structures between normal modes and singular modes are presented. Section 4
addresses the oceanic case where the two layer depths are unequal. A final discussion of
our results 15 given section 5.

2. THE PHILLIPS MODEL

The set-up is the two-layer quasi-geostrophic model on the g-plane of Phillips
(1954) where U;, H;, p; are, respectively, the constant zonal velocity of the basic state,
depth and density of each layer j = 1, 2. Both the upper and lower surfaces are ngid.
The linearized non-dimensional equations without friction are {(see Pedlosky 1987):

3 3 N | N oy OO
(g““U}‘a) {‘*72@;—{—l)JFj(cﬁz—cﬁ*z}}-l-{ﬁ“(ml)JFj(UzwUz)}T;=0,
(6)
ALY _ L*Baim ,, Ujdim
F}_gz;“{);’”ffj’ p=—r— Uj=—F (7)

where ¢; is the stream-function perturbation mn each layer, and the dim subscript
denotes dimensional numbers. Without lack of generality, we will choose Uy = — U/,
and the shear will be equal o Uy =U| — Uy =2U;. In order to use the singular-
vectors method we have to write the matrix equation associated with Eq. (6). The
column state vector, @ = A e; + Ares, 1s the stream function written in the orthonormal
basis (e[, €) for the L, norm (applied to the stream function) with ey o (e 1Y ()
er o (0, e®* Ty and k. [ the horizontal wave numbers. Thus, the stream-function
variance norm (proportional to the geopotential variance norm), for which S is the
identity matrix, is ©*®. Then Eq. (6) can be written as:

g
Q_x(D:AcD (8)
with
4 2 —i\ @t 2o —1 3 ,
A=_ip |l —2KkTHa ) +eta —a) —2(c? + B
B 20> = B =kt =20 ) kP —a) |
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We have mtroduced the following notations:

2_K+E ok g P
(F\F,)? (PR 2Ui/ER
Fi Hz
=
Fg H1
Uy (Fi B3k
B — 1{F1 F7)

K2k +a+al)

Except for the oceanic case considered in section 4, we will choose hereafter Hy = Hy =
H (i.e. a = | and, therefore, Fi = F = F). Furthermore, without loss of generality, the
velocity and length scales, U and L, are chosen such that U/} = (U gm)/U =1 and
F=1({e L=Rywith Rg={/gH(m — p1)/po}/(f) the internal Rossby radius of
deformation). This leads to the simplified expressions for A and B shown in appendix A.
Classical normal-mode results for this matrix are recalled in appendix A. In what
follows, ¢, and o. are the eigenvalues of A and the associated eigenvectors are,
respectively, the unstable normal mode ®.. and the stable normal mode & _.

We consider dimensional values corresponding to the atmosphere similar to those

of Fischer (1998): Coriolis parameter f = 10~% s~1, half-height H = 4500 m, zonal
wind Uygim = 7.35 m s~ !, Brunt-Viisild frequency N* = g(p2 — 1}/ (poH) =127 x
10~% 572, They yield Rq = 507 km. Furthermore, using Bgim = 1.7 x 10711 m~15~!
leads to B’ =0.297. Then, the dimensional e-folding time corresponding to max(Re
(o)) is equal to 36 hours.

3. COMPARISON OF THE NORMAL AND SINGULAR MODES

The kinetic-energy norm is proportional to the stream-function (or geopotential)
variance norm since, from the lineanzed Liqg. (6), the perturbation 1s monochromatic.
Consequently, the singular modes for the two norms are equal and the associated
amplification rates are the eigenvalues of M*M = exp(A*7) exp(Ar). If the dynamical
operator A is Hermitian, then the normal modes are orthogonal and identical to the
singular modes (indeed if A = A*, the eigenvectors of M*M = exp(2At¢) are those of
A). The difference between normal and singular modes is due to the anti-Hermitian part
A — A*, the main effect of which is to alter the vertical phase tilt of the perturbation
structures. An important point to emphasize is that the S-effect only comes into play m
that anti-Hermitian part (see Eq. (9)), the other component in A — A* being due to the
vertical shear.

The normal-mode amplification rate is proportional to ¢ where o, is the
largest eigenvalue of A (see appendix A) while the singular mode largest amplification
rate is hereafter denoted A (7).

ZRe(ay )t

(@) Short time limit
This limit is obtained for 2Re{o )t <« 1 (e.2. £ = (9(6 hours) in dimensional units)
and leads to the simplification:

M*M = exp(A™t) exp(At) ~ 1+ (A" + A) (10}

1 4iBx?t
o~ . 11
[mﬁm% ! } ¢t
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For short times, the only part of A which intervenes comes from the Hermitian part
A + A%, and B has thus no influence on the initial amplification rate. This result is quite
general and can be easily shown to remain valid for all types of norms (in particular
for the kinetic-energy and enstrophy norms). The singular modes which are optimal
for short times are, therefore, independent of £. The vertical structure of these singular
modes is characterized by a phase lag of /2 between ¢ and ¢, with @] = |¢2].
Indeed, the maximum eigenvalue of M*M is 1 -+ 4B« ¢ and its associated eigenvector is
(1, —1). This result has already been noted by Davies and Bishop (1994) and Warrenfeltz
and Elsberry (1989). This property 1s due to the fact that all the coefficients of A are pure

imaginary.

(b) Long time limit

For the long time limit, i.e. for e2R°@+) % 1 (which corresponds to ¢ equal to or

larger than (48 hours) in dimensional units), we can restrict ourselves to the unstable
band of wave numbers of normal-mode theory (k. < & < K¢, with ki and x5, the two
wave-number cut-ofts (see appendix A)). Indeed it can be shown that the wave number
with the maximum amplification for the kinetic-energy norm lies inside this band for
e*Relo) 5 1, For this long time limit, it is possible to find an analytical relation between
e2Rela)t and (1) (see appendix B):

eZRe({Jq_ t)

A= S+ las D+ la-|*) = a R0, (12)
a. —ay|

where a. are related to the components of the eigenvectors of A (see appendix A).
For a given wave number, the ratio o of the amplifications of the SM to the NM only
depends on parameters of the system. Using the expression for a4 (given by Eq. (A.4)),
we obtain:

A P
= S2Relogt) 8 '
& Kf-i . % » ﬁfl

(13)

a

For x =1 and with B’ =0.297 we obtain o = 1.51, while with B’ =0, o = 1.33,
showing that 8 has a quantitatively significant influence on the SM.
Let us now examine the vertical structure of the different modes. The eigenvector

associated with A when e?R¢@+) 5 1 is the vector $ defined in appendix B. This
vector 1s orthogonal to the stable normal mode ©_. and is, therefore, the bi-orthogonal
to the unstable normal mode $.. (see appendix B, Eq. (B.5)). This is a well known
result of ‘Generalized Stability Theory’ (see Farrell and Ioannou 1996) that, when the
normal modes are not orthogonal, the perturbation for optimal growth in the long time
limit is not the unstable normal mode but its bi-orthogonal. i a, = r ™, the most
unstable NM, &, presents a vertical westward tilt which is characterized by a phase
lag, #, between ¢1 and ¢, while the bi-orthogonal &, has a phase lag equal to 7 ~ 6,
The main effect of 8 is concomitantly to decrease the value of 8 (see appendix A)
and, therefore, to increase the value of the phase lag of the bi-orthogonal, = — 8. The
efficiency of the bi-orthogonal is linked to its phase lag which increases with 8. Thus, in
the presence of B, the westward tilt of & becomes less inclined to the vertical whereas
the opposite is true for $. Thus, f will exaggerate the differences between the normal-
mode structare and its bi-orthogonal.
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Figure 1. Amplification rates for the kinetic-energy norm versus horizomtal wave number, in umits of

2 % 107% m~!. Normal mode, exp{2Re(o. )t} (continuous line); singular mode, A(z) (dashed line). (a) 7 =

& hours, B =10, {b) f==6 hours, =17 x 107" m~Is71, (¢} +="72 hours, =0, (d) =72 hours, 8=
1.7 x 107 mis™!, See text for further details.

(¢) Amplifications
Let us first consider the results in the absence of § for the kinetic-energy norm.

Amplification rates of NMs and SMs (respectively, e“®¢(9+) and A(¢)) versus horizontal
wave number are compared for two different optimization times: the short time limit
(Fig. 1(a)) corresponding to £ = 6 hours in dimensional units, and the long time limit
(Fig. 1(c)) corresponding to t = 72 hours. A reaches a maximum at a finite wave number
larger than that corresponding to the radius of deformation. It has no short-wave cut-off
and tends to 1 for high wave numbers. At small wave numbers the SM curve is close to
the NM curve for all optimization times. Near the cut-off wave number for short times
(Fig. 1(a})}, the SM is largely amplified, and it is in the vicinity of this wave number that
the difference between the SM and NM is the largest. For & > x2., interactions between
two neutral non-orthogonal waves can be constructive as shown by Rotunno and Fantini
(1989). For such wave numbers, no structure can remain stationary and the behaviour for
any perturbation is sinusoidal in time (see appendix B). After a long time (Fig. 1(c)), the
wave number with maximum A tends to that of NM, but A is still 25% larger than NM.
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Figure 2. Amplification rates for the potential-enstrophy norm versus horizontal wave number, in units of

2 x 107% m~!. Normal mode, exp{2Re{o )y} (continuous lne); singular mode, Ag,s(¢) (dashed line). (a) f =

72 hours, B =0,1=0,(b) # =72 hours, = 1.7 x 107" m~1s~1 [ =0, (¢) r =72 hours, S =0, ] =0.4/Ry,
(d) £ =72 hours, B8 = 1.7 x 10~ m~1571 [ = 0.4/Ry. See text for further details.

The above results corroborate the main results of Fischer (1998) for the Eady problem
without 5.

Let us now consider the influence of the S-effect on the NM and SM, still for the
case of the kinetic-energy norm. Figures 1(b) and (d) correspond to the same specified
finite times as Figs. 1(a) and (c), respectively. After a short time (Fig. 1(b)), we remark
that A is unchanged, proving that 8 does not influence the growth for short times as
already anticipated analytically. We have found that the sensitivity to the S-effect only
occurs after a larger time (¢ > 24 hours in dimensional units). At small wave numbers,
because of the existence of a wave-number cut-off, x, in the NM in the presence of 8,
the two types of modes behave very differently. For the fong time limit (Fig. 1(d)), the
unstable band of wave numbers for the SM is approximately equivalent to the unstable
normal band. More precisely, the wave number which maximizes A tends to that of
the maximum NM. However, the major difference is that the maximum SM is now 50%
larger than the maximum NM, while that value only reached 25% for § = 0. This larger
difference i amplhification rates is due to the fact that g has a lesser stabilizing influence
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Figure 3. Vertical structure of the stream-function field for x = 1. (a) Normal mode, (b) singular mode for the
kinetic-energy norm optimized for ¢ = 6 hours, (¢) bi-orthogonal for the kinetic-energy norm. See text for further
details.

on the SM than on the NM, as already shown in section 3(b). When taking into account
FEkman friction {(not shown here), we have found that the differences between the SM
and NM are not modified quantitatively leading to the conclusion that friction has no
influence on the intercomparison SM-NM.

The case of the potential-enstrophy norm was also studied by intercomparing the
maximum amplification (Apas(r)) of the SM with the NM amplification e?Re(@+),
From the discussion of the introduction, Agas(?) is the largest eigenvalue of the matrix

S—IM*(1)SM(r) with

1 —(k? 4+ 1

In the case / = 0 and 8 = 0 (Fig. 2(a)) Agns (¢) becomes infinite for shott wave numbers.
With 8 £ 0, 1 =0 (Fig. 2(b)), 8 =0, I # 0 (Fig. 2(c)) or B # 0,1 # 0 (Fig. 2(d)), the
AEns (1) curve is bell shaped and reaches a maximum at a finite wave number smaller
than the radius of deformation. For the long time limit, this wave number will tend to
that of the maximum NM but less rapidly than for the kinetic-energy norm. In contrast

e 2
Sz(—@w+w 1 )_ (14)
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Figure 4. Time evolution of the vertical structure of the stream-function field for an initial perturbation corre-
sponding to the bi-orthogonal for the kinetic-energy norm: ®(0) == $q, for & = 1. (a) ® (1 hour), (b) & (6 hours),
{¢) @ (24 hours), (d) & (72 hours). See text for further explanation.

to the kinetic-energy norm for the long time limit, the wave number with the maximum
AEns In Figs. 2(b)-(d) does not correspond to the wave number of the maximum NM: the
unstable band for the potential-enstrophy norm is not yet close to the unstable normal
band, because of the persistence of the instability of the small wave numbers (k < «.).
The main difference between the kinetic-energy and potential-enstrophy norms is due
to the role of the smallest wave numbers (k — 0) where the contribution of the potential

part (which is proportional to the temperature variance) dominates: the limit k —» 0 is

also discussed in Juckes (1995).
If we restrict our study of the g-effect to the unstable normal band, for e2Re(04)f 5, 1.

one can easily find analytically the relation between A, Apg, and e?Re(@+)? .

eZRE(z:r+ t) by

Aﬁns — (15)

8 =4
Kém%_ﬁfg K

We remark that for « = 1, the two amplifications A and Agy, are equal. Furthermore, for
a given wave number for e2Relos) 5, 1 ABns = A/ x4 and the factor of proportionality
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between Apgs and A does not depend on 8. Inside the unstable normal band for a given
wave number the S-effect is the same for the two normis.

{d) Vertical structures

We shall only consider here wave numbers located in the unstable normal band. It
is well known that the NM has a stationary spatial structure and that any perturbation
tends to this structure for long times. Indeed, in the limat e2Re(o1)t 5, 1 for any $(0),
& (1) = M{(1)®(0) is proportional to © . (see appendix B). However, the NM does not
have the optimal structure (i.e. a phase quadrature) to extract energy from the basic
flow most efficiently (the NM vertical structure has a phase lag & < /2, Fig. 3(a))".
This is why the SM differs from the NM. But SM structures which differ from NM
structures are non-stationary because of two effects included in the anti-Hermitian part
of A: firstly the vertical shear and secondly the B-effect. This is why the quadrature is
only the optimal structure for short times. For longer times, Warrenfeltz and Elsberry
(1989) for the Phillips model, and Davies and Bishop (1994) for the Eady model, noticed
that the optimal structure has a slope more inclined to the vertical than the quadrature
and this is also clearly seen in the vertical structures of the SM of Fischer (1998). Finally,
the initial phase lag of any SM lies between 77 /2 (optimization for short times, Fig. 3(b))
and ;v — @ (optimization for long times corresponding to the bi-orthogonal, Fig. 3(c)).
If ®(0) = Py (i.e. a system which is initialized with the bi-orthogonal), we see in
Figs. 4(a)-(d) that the evolution of the perturbation towards the normal structure is very
rapid, particularly so within the short time limit: this is due to the rotation effect of the
anti-Hermitian part of A. After one day, the vertical structures ®(r) and &, are already
quite similar.

4. 'THE OCEANIC CASE

In contrast to the large-scale tropospheric stratification which can be approximated
by a constant Brunt—Viisili profile, the oceanic mid-latitude stratification presents a
pronounced peak in its Brunt-Viisild profile in the vicinity of the main thermocline.
This feature can be captured in a two-layer model by choosing quite different values
for the depths of the layers: in the case of the Phillips model, this leads to the well
known assymmetry between eastward and westward shears when the f-effect ig taken
into account (Pedlosky 1987).

For different layer depths (H) # Hy), it is also possible to find a relation between
the SM and NM in the presence of the §-effect:

K“E
}\‘ — BZR¢[0’_|_I:I ) (16)

g g e
K4—“xﬁ””ﬁ"2_{a§ )ﬁ!(&:4+{ag )ﬁ!)

This last equation shows that, for g = 0, there i3 no difference between equal and
unequal layer depths. However, for 8 # 0, using a typical oceanic value of H; = i /4
(which leads to @ = 2), we find that, for x =1, o reaches 1.8, whereas without £ its
value is 1.33. The influence of 8 on the intercomparison SM-NM is, therefore, further
accentuated in the oceanic case. Figures 5(a) and (b) are equivalent to Figs. 1(c) and
(d) but for the oceanic case. They show that for the long time limit, i.e. 7 =24 days
(corresponding to the oceanic parameter settings), the SM 1s 1.8 times larger than the
NM.

* The vertical structure of the two-layer stream function, & = Are; + Age; is defined in Figs. 3 and 4 by
®{x, ) =Re([{(A; + A2}/2} — {(A1 — A2)/2} cos(wz)] expllinx}) forz € [0, 1] and x € [(, 1],



INFLUENCE OF THE g-EFFECT 1385

(a) (b}

Figure S. Amplification rates for the kinetic-energy norm in the oceanic case where Hy = H; /4 versus horizontal
wave pumber, in units of 18 x 107% m™'. Normal mode, exp{2Re{o. )} {continuous line}; singular mode, Agp{f)
(dashed line). {a) = 24 days, 8 = 0, (b} # = 24 days, B = 1.7 x 107 m~1s7%, See text for further details.

5. (CONCLUSION

A systematic analytical study of the S-effect on singular modes for finite time has
been carried out for both the kinetic-energy and the potential-enstrophy norms. g solely
intervenes in the anti-Hermitian part of A which is the crucial term for the differences
in behaviour between the normal and singular modes. This part plays a significant role
only after a finite time (for atmospheric parameter settings, the B-effect starts to have
a quantitative influence for ¢ > 24 hours). This anti-Hermitian part affects the vertical
phase tilt of the perturbation structures and it is well known that the energy exchange
between the basic flow and perturbations is strongly sensitive to this vertical structure.
B is the only parameter that is completely included in the anti-Hermitian part. This
rationalizes the effect of B on the singular modes and explains why the amplification
rate for these modes is 1.5 times larger than for the normal modes. For a geometry with
different layer depths, the effect of § on the vertical phase tilt is accentuated and the
singular modes’ amplification rate is 1.8 times larger than that of the normal modes
after 24 days (which corresponds to the long time limit in the oceanic case).

Furthermore, we showed that in the normal unstable band, for a given wave number,
the B-effect is the same for the kinetic-energy and the potential-enstrophy norms: it has
a lesser stabilizing influence on the singular modes than on the normal modes. For the
potential-enstrophy norm singular modes have a maximum for 8 O or [ £ 0. The wave
number corresponding to this maximum is smaller than the radius of deformation. The
particularity of singular modes for this norm is that after 3 days (for the atmospheric
parameter settings) the most unstable band is not the normal unstable band: small wave
numbers below the wave-number cut-off are still very unstable.

APPENDIX A

Normal modes of the Phillips model
Without friction and with equal layer depths, the linearized operator is:

et — 22 + 1B’ —2(x* + B }

26t =By =t =20+ D A1)

Am—iﬁ'{
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with B = k' /{x2(«? + 2)}.
The eigenvalues of A are:

0w = B(2i(? + DB £/~ + et — 4572, (A2)

@ = ({f ) , (A3)

with eigenvectors

such as
% : 8 4 2
K=Y i/ —x® + 454 — 4
(g = \/ —5 P . (A4}
2(k=+ p)
There are two wave-number cut-offs, x == «j. and k¥ = k., which satisfy the equation
—ic8 it 482 =0, (A.5)

If we note ¢.. = r e, then the unstable normal mode ¢4 has a phase lag & between
¢1 and ¢ (the stream-function perturbation in layers 1 and 2) such that

-\/—KS 4+ 4it — 4;3!2
x4 '
As 8 decreases with g, the vertical normal-mode structure is less inclined to the vertical.

If we 1nitialize the system with the unstable normal mode ¢ (0) = ®_, the amplification
rate for all norms is (using Eqgs. (3), (4) and (5)):

(@), @) _
(#(0), $(0)

tan{f) =

(A.6)

exp{2Re(o)t}. (A.7)

APPENDIX B

Singular modes of the Phillips model

In general, the resolvent M = exp(A¢) can be obtained from the eigenvectors and
eigenvalues of A, We have:

Aw=P [65' O,O ] P*I, with P = I:;"% ; :I 3 (B.1)

which leads to:

e+ 0 P“"- . e { a._ e+ ay pO—1 e @4 o a1
0 e"! ay —a. jasa_ (™ —e’") —ape™ fa e |’

MzP[

and the eigenvalues of M*M are easily computed™ (see appendix in Fischer (1998)).
In the long time limit, for the unstable normal band (emﬂ(ﬂ”f > 1), M and, there-
fore, M*M can be simplified:

eERa: (o)t

~ 2, [ la-|? —as
MM s (1 oy }[_a ; ] (B.3)

* For the sake of simplicity, the analysis is restricted to the norms for which § == v I with I the identity matrix and
¥ a scalar,
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The largest ergenvalue, A, of M*M is:

adRe(or)

A= 5 (L4 lay YA + la- ), (B.4)
la- — ay

and 1ts associated eigenvector 1s the bi—erthdgﬂnal of ®,.:

Do = (fji) . (B.5)

In the stable normal bands (k < k. or & > K2}, the two neutral normal modes in these
bands are not orthogonal and can, therefore, interact to extract energy from the basic
flow (Held 1985; Rotunno and Fantini 1989). Each perturbation can be expressed as a
linear combination of the normal modes

QO =c DL+ D, (B.6)
with ¢ and c_. the linear coefficients of & and & _, respectively, so that
(N =MPO)=cpe® P +c_e’'P_. (B.7)

In the stable normal bands o, and o_. are purﬁi imaginary and

o = B2i(x* + 1) +i/k® — 4t + 4872}, (B.8)

In {¢(1), ¢(1)), only coefficients of &2 P_ are functions of time, . Denoting the
complex conjugate with an overbar, we find:

(@), p() = e [PPL Dy + [P PT D
+Trc_ et oY D
+e_cpe? e er P,
s0 that
(B(1), p(1)) = e PDL D4 + e [P" D
+2Re(@T e e+ e?f % D).
(@ (1), ¢(1)) 18 sinusoidal with time and its period is proportional to:
1 1
O+ 0 = 2B/Kk8 — dit + 4872

This period is thus infinite for wave numbers close to the wave-number cut-offs (i,
k2:). This is why a perturbation with a wave number located in the stable normal band
can be very unstable at finite time and be quite comparable to the exponential growth of
the unstable normal band.
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